
The Myhill-Nerode Theorem 
(lecture 20) 



Isomorphism of DFAsIsomorphism of DFAs

 M = (QM,S,dM,sM,FM), N = (QN,S, dN,sN,FN): two DFAs
 M and N are said to be isomorphic if there is a 

(structure-preserving) bijection f:QM-> QN s.t.
◦ f(sM) = sN
◦ f(dM(p,a)) = dN(f(p),a) for all p  QM , a  S
◦ p  FM iff f(p)  FN.

 I.e., M and N are essentially the same machine up to 
renaming of states.

 Facts:
◦ 1. Isomorphic DFAs accept the same set.
◦ 2. if M and N are any two DFAs w/o inaccessible states 

accepting the same set, then the quotient automata M/ and 
N/  are isomorphic

◦ 3. The DFA obtained by the minimization algorithm (lec. 14) is 
the minimal DFA for the set it accepts, and this DFA is unique 
up to isomorphism.



MyhillMyhill--NerodeNerode RelationsRelations

 R: a regular set, M=(Q, S, d,s,F): a DFA for R w/o 
inaccessible states.

 M induces an equivalence relation M on S* defined by
◦ x  M y iff D(s,x) = D (s,y).
◦ i.e., two strings x and y are equivalent iff it is 

indistinguishable by running M on them (i.e., by running M 
with x and y as input, respectively, from the initial state of M.)

 Properties of  M :
◦ 0.  M is an equivalence relation on S*.

(cf:  is an equivalence relation on states) 
◦ 1.  M is a right congruence relation on S*: i.e., for any x,y 
S* and a  S, x  M y => xa  M ya.

◦ pf:  if x  M y => D(s,xa) = d(D (s,x),a) = d(D (s,y),a) = D(s, 
ya)

=> xa  M ya.



Properties of the Properties of the MyhillMyhill--NerodeNerode
relationsrelations

 Properties of  M :
◦ 2. M refines R. I.e., for any x,y  S*,
◦ x M y => x  R iff y  R
◦ pf:  x  R  iff D(s,x)  F iff D(s,y)  F iff y  R.
◦ Property 2 means that every M-class has either all its 
elements in R or none of its elements in R. Hence R is a 
union of some  M-classes.

◦ 3. It is of finite index, i.e., it has only finitely many 
equivalence classes.

◦ (i.e., the set { [x] M | x  S*} 
◦ is finite.
◦ pf: x M y iff D(s,x) = D(s,y) = q
◦ for some q  Q. Since there
◦ are only |Q| states,  hence
◦ S* has |Q| M-classes

S* R

M-classes



Definition of the Definition of the MyhillMyhill--NerodeNerode
relationrelation

  : an equivalence relation on S*, 
R: a language over S*.

  is called an Myhill-Nerode relation for R if it satisfies 
property 1~3. i.e., it is a right congruence of finite index 
refining R.

 Fact: R is regular iff it has a Myhill-Nerode relation.
◦ (to be proved later)
◦ 1. For any DFA M accepting R, M is a Myhill-Nerode relation for R.
◦ 2. If  is a Myhill-Nerode relation for R then there is a DFA M

accepting R.
◦ 3. The constructions M  M and   M are inverse up to 

isomorphism of automata. (i.e.  =  M and M = MM)



From From  to Mto M

 R: a language over S,  : a Myhill-Nerode relation for 
R;
◦ the -class of the string x is  [x] =def {y | x  y}.
◦ Note: Although there are infinitely many strings, there are 

only finitely many  -classes. (by property of finite index)
 Define DFA M = (Q,S,d,s,F) where

◦ Q = {[x] | x  S*},      s = [e],
◦ F = {[x] | x  R },       d([x],a) = [xa].

 Notes: 
◦ 0: M has |Q| states, each corresponding to an  -class of . 

Hence the more classes  has, the more states M has.
◦ 1. By right congruence of  , d is well-defined, since, if y,z [x] 

=> y  z  x => ya  za  xa => ya, za  [xa]
◦ 2. x  R iff [x]  F. 
◦ pf: =>: by definition of M ;
◦ <=: [x]  F => $ y s.t. y  R and x  y => x  R. (property 2)



M M   MM and and   MM are inverses are inverses 

Lemma 15.1: D([x],y) = [xy]
pf: Induction on |y|.  Basis: D([x],e) = [x] =[xe].

Ind. step: D([x],ya) = d(D([x],y),a) = d([xy],a) = 
[xya].  QED

Theorem 15.2: L(M) = R.
pf: x  L(M)  iff D([e],x)  F iff [x]  F iff x  R.  QED

Lemma 15.3:  : a Myhill-Nerode relation for R, M: a 
DFA for R w/o inaccessible states, then

1. if we apply the construction   M to  and then 
apply M  M to the result, the resulting relation M  is 
identical to  .

2. if we apply the construction M  M to M and then 
apply   M to the result, the resulting relation MM
is identical to M.



M M   MM and and   MM are inverses (cont’d)are inverses (cont’d)

Pf: (of lemma 15.3) (1) Let M =(Q,S,d,s,F) be the 
DFA constructed as described above. then for any 
x,y in S*,

x M y iff D([e], x) = D([e],y) iff [x] = [y] iff x  y. 
(2) Let M = (Q, S ,d,s,F) and let MM = (Q’, S , d’,s’,F’). Recall that

◦ [x] = {y | y M x} = {y | D(s,y) = D(s,x) }
◦ Q’ = {[x] | x  S*},     s’ = [e],  F’ = {[x] | x  R}
◦ d’([x], a) = [xa].

Now let f:Q’-> Q be defined by f([x]) = D(s,x).
◦ 1. By def., [x] = [y] iff D(s,x) = D(s,y), so f is well-defined 

and 1-1. Since M has no inaccessible state, f is onto.
◦ 2. f(s’) = f([e]) = D(s, e ) = s
◦ 3. [x]  F’ <=> x  R <=> D(s,x)  F <=> f([x])  F.
◦ 4. f(d’([x],a)) = f([xa]) = D(s,xa) = d(D(s,x),a) = d(f([x]), a)
◦ By 1~4, f is an isomorphism from MM to M.  QED



Relations b/t DFAs and Relations b/t DFAs and MyhillMyhill--NerodeNerode
relationsrelations
Theorem 15.4: R: a regular set over S. Then up to 

isomorphism of FAs, there is a 1-1 correspondence 
b/t DFAs w/o inaccessible states accepting R and 
Myhill-Nerode relations for R.
◦ I.e., Different DFAs accepting R correspond to different 

Myhill-Nerode relations for R, and vice versa.
◦ We now show that there exists a coarsest Myhill-Neorde

relation  R for any R, which corresponds to the unique 
minimal DFA for R.

Def 16.1:  1 ,  2 : two relations.  If 1  2 (i.e., for 
all x,y, x 1 y => x 2 y) we say 1 refines 2 . 

Note:1.  If  1 and  2 are equivalence relations, then 
 1 refines  2 iff every  1-class is included in a  2-
class. 

2. The refinement relation on equivalence relations is 
a partial order. (since  is ref, transitive and 
antisymmetric).



The refinement relationThe refinement relation

Note:
3. If , 1   2 ,we say 1 is the finer and 2 is the 
coarser of the two relations.
4. The finest equivalence relation on a set U is the 

identity relation IU = {(x,x) | x  U}
5. The coarsest equivalence relation on a set U is 
universal relation U2 = {(x,y) | x, y  U}

Def. 16.1:  R: a language over S (possibly not regular). 
Define a relation R over S*  by

x R y iff for all z  S* (xz  R <=> yz  R)
i.e., x and y are related iff whenever appending the same 

string to both of them, the resulting two strings are 
either both in R or both not in R. 



Properties of Properties of  RR

Lemma 16.2: Properties of R :
◦ 0. R is an equivalence relation over S*.
◦ 1. R is right congruent
◦ 2. R refines R. 
◦ 3. R the coarsest of all relations satisfying 0,1 and 2.
◦ [4. If R is regular => R is of finite index. ] 

Pf: (0) : trivial; (4) immediate from (3) and theorem 
15.2.
(1) x R y => for all z  S* (xz  R <=> yz  R) 

=>  a  w  (xaw  R <=> yaw  R) 
=>  a (xa R ya)  

(2) x R y  => (x  R <=> y  R)
(3)  Let  be any relation satisfying 0~2. Then
x  y => z xz  yz --- by ind. on |z| using 

property (1)
=> z (xz  R <=> yz  R)  --- by (2)   => x 

R y.



MyhillMyhill--NerodeNerode theoremtheorem

Thorem16.3: Let R be any language over S. Then the 
following statements are equivalent:
(a) R is regular;
(b) There exists a Myhill-Nerode relation for R;
(c) the relation R is of finite index.

pf: (a) =>(b) : Let M be any DFA for R. The construction 
M  M produces a Myhill-Nerode relation for R.

(b) => (c):  By lemma 16.2, any Myhill-Nerode
relation for R is of finite index and refines R => R is of 
finite index. 

(c)=>(a): If R is of finite index, by lemma 16.2, it is 
a Myhill-Nerode relation for R, and the construction  
M produce a DFA for R. 



Relations b/t Relations b/t  RR and collapsed machineand collapsed machine
Note: 1. Since  R is the coarsest Myhill-Nerode relation for 

a regular set R, it corresponds to the DFA for R with the 
fewest states among all DFAs for R.
(i.e., let M = (Q,...) be any DFA for R and M = (Q’,…) the 
DFA induced by R, where Q’ = the set of all  R-classes
==> |Q| = | the set of  M-classes | >= | the set of R -
classes |

= |Q’|.
Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed 

(i.e., M = M/).  Then R = M (hence M is the unique 
DFA for R with the fewest states).

pf: x R y iff  z  S* (xz  R <=> yz  R)
iff  z  S* (D(s,xz)  F <=> D(s,yz)  F) 

iff  z  S* (D(D(s,x),z)  F <=> D(D(s,y),z)  F)
iff D(s,x)  D(s,y)   iff D(s,x) = D(s,y) -- since M is 
collapsed
iff x M y     Q.E.D.



An application of the An application of the MyhillMyhill--NerodeNerode
relationrelation

 Can be used to determine whether a set R is 
regular by determining the number of R -
classes.

 Ex: Let A = {anbn | n  0 }.
◦ If k  m => ak not A am, since akbk A but ambk 
A . 

Hence A is not of finite index => A is not regular.
◦ In fact A has the following A-classes:
◦ Gk = {ak}, k  0
◦ Hk = {an+k bn | n  1 }, k  0
◦ E = S* - Uk  0 (GkU Hk) = S* - {ambn | m  n  0 }



Minimal NFAs are not unique up to Minimal NFAs are not unique up to 
isomorphismisomorphism

 Example: let L = { x1 | x ∈ {0,1} }*
1. What is the minimum number k of states of 

all FAs accepting L ?  
Analysis : k ≠ 1. Why ?

2. Both of the following two 2-states FAs accept 
L.

p q

0,1

1
ts

0 1
1

0



Collapsing NFAsCollapsing NFAs

 Minimal NFAs are not unique up to isomorphism
 Part of the Myhill-Nerode theorem generalize to NFAs 

based on the notion of bisimulation.
 Bisimulation:
Def: M=(QM,S, dM,SM,FM), N=(QN,S,dN,SN,FN): two NFAs,

 : a binary relation from QM to QN. 
◦ For B  QN , define C (B) = {p  QM | $q  B  p  q }
◦ For A  QM, define  C (A) = {q  QN | $P  A  p  q }
Extend  to subsets of QM and QN as follows:

◦ A  B <=>def A  C(B) and B   C(A)
◦ iff p  A $q  B s.t. p  q and  q  B $p  A s.t. p  q 



QM QN

A C(A)



C(C(A))

qp



BisimulationBisimulation

 Def B.1: A relation  is called a bisimulation if
◦ 1. SM  SN
◦ 2. if p  q then a  S, dM(p,a)  dN(q,a)
◦ 3. if p  q then p  FM iff q  FN.

 M and N are bisimilar if there exists a bisimulation
between them.

 For each NFA M, the bisimilar class of M is the 
family of all NFAs that are bisimilar to M.

 Properties of bisimulaions:
1.Bisimulation is symmetric: if  is a bisimulation b/t M 
and N, then its reverse {(q,p)|pq} is a bisimulation b/t 
N and M.

2.Bisimulation is transitive: M 1 N and N 2 P => M 1 2 P
3.The union of  any nonempty family of bisimulation b/t M 
and N is a bisimulation b/t M and N.



Properties of Properties of bisimulationsbisimulations

Pf: 1,2: direct from the definition.
(3): Let {i | i  I } be a nonempty indexed set of bisimulations b/t M and 

N.  Define  =def Ui  I  i.
Thus p  q  means  $i  I p  i q.
1. Since I is not empty, SM  i SN for some i  I, hence SM  SN
2. If p  q  => $i  I p  i q => dM(p,a)  i dN(q,a) => dM(p,a)  dN(q,a) 
3. If p  q  => p  i q for some i => (p  FM <=> q  FN )
Hence  is a bisimulation b/t M and N.
Lem B.3:  : a bisimulation b/t M and N. If A  B, then for all x in S*, D(A,x) 
 D (B,x).

pf: by induction on |x|. Basis: 1. x = e  =>D(A,e) = A  B = D(B,e).
2.x = a  : since A  C(B), if p  A => $q  B with p  q. => dM(p,a) 

C(dN(q,a))  C (DN(B,a)). =>   DM (A,a) = Up  A dM (p,a)  C(DN(B,a)). 
By a symmetric argument, DN(B,a)  C(DM(A,a)). 
So DM (A,a)  DN(B,a)). 



BisimilarBisimilar automata accept the same set.automata accept the same set.

3. Ind. case: assume DM(A,x)  DN(B,x). Then
DM(A,xa) = DM(DM(A,x), a)  DN(DN(B,x),a) = DN(B,xa).  
Q.E.D.

Theorem B.4: Bisimilar automata accept the same set.
Pf: assume  : a bisimulation b/t two NFAs M and N.

Since SM  SN => DM (SM,x)  DN (SN,x) for all x.
Hence for all x, x  L(M) <=> DM(SM, x)  FM  {} 
<=> DN(SN,x)  FN  {}  <=> x  L(N).   Q.E.D.

Def:  : a bisimulation b/t two NFAs M and N
The support of  in M is the states of M related by  to 
some state of N, i.e., {p  QM | p  q for some q  QN} 
= C(QN).



AutobisimulationAutobisimulation

Lem B.5: A state of M is in the support of all bisimulations
involving M iff it is accessible.

Pf: Let  be any bisimulation b/t M and another FA.
By def B.1(1), every start state of M is in the support of .
By B.1(2), if p is in the support of , then every state in 
d(p,a) is in the support of . It follows by induction that 
every accessible state is in the support of .

Conversely, since the relation B.3 = {(p,p) | p is accessible} 
is a bisimulation from M to M and all inaccessible states of 
M are not in the support of B.3. It follows that no 
inaccessible state is in the support of all bisimulations.   
Q.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an 
automaton and itself.



Property of Property of autobisimulationsautobisimulations

Theorem B.7:  Every NFA M has a coarsest 
autobisimulation  M , which is an equivalence 
relation.

Pf: let B be the set of all autobisimulations on M.
B is not empty since the identity relation IM = {(p,p) 
| p in Q } is an autobisimulation.

1. let M be the union of all bisimualtions in B. By 
Lem B.2(3),   M is also a bisimualtion on M and 
belongs to B. So M is the largest (i.e., coarsest) of 
all relations in B.

2. M is ref. since for all state p (p,p)  IM  M .
3. M is sym. and tran. by Lem B.2(1,2). 
4. By 2,3, M is an equivalence relation on Q.



Find minimal NFA Find minimal NFA bisimilarbisimilar to a NFAto a NFA

 M = (Q,S,d,S,F) : a NFA.
 Since accessible subautomaton of M is bisimilar to M under the 

bisimulation B.3, we can assume wlog that M has no inaccessible 
states.

 Let  be M, the maximal autobisimulation on M. 
for p in Q, let [p] = {q | p  q } be the -class of p, and 
let  « be the relation relating p to its -class [p], i.e.,

«  Qx2Q =def {(p,[p]) | p in Q }
for each set of states A  Q, define [A] = {[p] | p in A }. Then

Lem B.8: For all A,B  Q,
◦ 1. A  C (B)  iff [A]  [B],   2. A  B iff [A] = [B],    3. A « [A]

pf:1. A  C(B)  <=>p in A  q in B s.t. p  q <=> [A]  [B]
2. Direct from 1 and the fact that A  B iff A  C(B) and B  C(A) 
3. p  A => p  [p]  [A], B  [A] => $ p  A with p « [p] = B.                       



Minimal NFA Minimal NFA bisimilarbisimilar to an NFA (cont’d)to an NFA (cont’d)

 Now define M’ = {Q’, S, d’, S’,F’} = M/ where
◦ Q’ = [Q] = {[p] | p  Q},
◦ S’ = [S] = {[p] | p  S} ,   F’ = [F ] = {[p] | p  F} and
◦ d’([p],a) = [d(p,a)], 
◦ Note that d’ is well-defined since 

[p] = [q] => p  q => d(p,a)  d(q,a) => [d(p,a)] = [d(q,a)]
=> d‘([p],a) = d‘([q],a)

Lem B.9: The relation « is a bisimulation b/t M and M’.
pf: 1. By B.8(3): S  [S] = S’.

2. If p « [q] => p  q => d(p,a)  d(q,a)
=> [d(p,a)] = [d(q,a)] => d(p,a) « [d(p,a)] = [d(q,a)].

3. if p  F => [p]  [F] = F’ and 
if [p]  F’= [F] => $q  F with [q] = [p] => p  q => p 

By theorem B.4, M and M’ accept the same set.



AutobisimulationAutobisimulation
Lem B.10: The only autobisimulation on M’ is the 

identity relation =.
Pf: Let ~ be an autobisimulation of M’. By Lem B.2(1,2), 

the relation « ~ » is a bisimulation from M to itself.
1.  Now if there are [p]  [q] (hence not p  q ) with [p] 
~ [q]

=> p « [p] ~ [q] » q => p « ~ » q  => « ~ »  , a 
contradiction !.

On the other hand, if [p] not~ [p] for some [p] => for 
any [q],
[p] not~ [q] (by 1. and the premise)

=> p not (« ~ » ) q for any q  (p « [p]  [q] » q )
=> p is not in the support of « ~ »  



Quotient automata are minimal FAsQuotient automata are minimal FAs

 Theorem B11: M: an NFA w/t inaccessible states,  : maximal 
autobisimulation on M. Then M’ = M / is the minimal 
automata bisimilar to to M and is unique up to isomorphism.

pf: N: any NFA bisimilar to M w/t inaccessible states.
N’ = N/ N where N is the maximal autobisimulation on N.

=> M’ bisimiar to M bisimilar to N bisimiar to N’.
Let  be any bisimulation b/t M’ and N’.

Under , every state p of M’ has at least on state q of  N’ with p 
 q  and every state q of N’ has exactly one state p of M’ with p 
 q.
O/w p  q  -1 p’  p =>   -1 is a non-identity autobisimulation 
on M, a contradiciton!. 

Hence   is 1-1. Similarly, -1 is 1-1 =>  is 1-1 and onto and 
hence is an  isomorphism b/t M’ and N’.  Q.E.D.



Algorithm for computing maximal Algorithm for computing maximal 
bisimulationbisimulation

 a generalization of that of Lec 14 for finding equivalent states 
of DFAs

The algorithm: Find maximal bisimulation of two NFAs M and N
◦ 1. write down a table of all pairs (p,q) of states, initially
◦ unmarked
◦ 2. mark (p,q) if p  FM and q  FN or vice versa.
◦ 3. repeat until no more change occur: if (p,q) is 

unmarked and if for some a  S, either
$p’  dM(p,a) s.t.  q’  dN(q,a), (p’,q’) is marked, or
$q’  dN(q,a) s.t.  p’  dM(p,a), (p’,q’) is marked,
then mark (p,q).

◦ 4. define p  q iff (p,q) are never marked.
◦ 5. If SM  SN =>  is the maximal bisimulation

◦ o/w M and N has no bisimulation.


